Generative Models as an Emerging Paradigm in the Chemical Sciences
Dylan M. Anstine, Olexandr Isayev
Journal of the American Chemical Society , Vol. 145, Issue 16, pp. 8736-8750 (2023)
Advancing Computational Chemistry Through Machine Learning
We develop and apply machine learning methods to solve challenging problems in computational chemistry, materials science, and drug discovery.
Our work spans multiple areas at the intersection of chemistry, physics, and artificial intelligence.
Transferable neural network potentials bridging quantum accuracy with computational efficiency for molecular simulations
Learn more →
Generative models enabling systematic exploration of chemical space under biological and synthetic constraints
Learn more →
ML-enabled workflows for scalable, reliable, and reproducible chemical experimentation in cloud laboratories
Learn more →
Latest research output from the lab
Dylan M. Anstine, Olexandr Isayev
Journal of the American Chemical Society , Vol. 145, Issue 16, pp. 8736-8750 (2023)
Dylan M. Anstine, Olexandr Isayev
The Journal of Physical Chemistry A , Vol. 127, Issue 11, pp. 2417-2431 (2023)
Nongnuch Artrith, Keith T. Butler, François-Xavier Coudert, Seungwu Han, Olexandr Isayev, Anubhav Jain, Aron Walsh
Nature Chemistry , Vol. 13, Issue 6, pp. 505-508 (2021)
Anna Cichonska, Balaguru Ravikumar, Robert J Allaway, Sungjoon Park, Fangping Wan, Olexandr Isayev, Shuya Li, Michael Mason, Andrew Lamb, Ziaurrehman Tanoli, Minji Jeon, Sunkyu Kim, Mariya Popova, Stephen Capuzzi, Jianyang Zeng, Kristen Dang, Gregory Koytiger, Jaewoo Kang, Carrow I. Wells, Timothy M. Willson, The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium, Tudor I. Oprea, Avner Schlessinger, David H. Drewry, Gustavo Stolovitzky, Krister Wennerberg, Justin Guinney, Tero Aittokallio
Unpublished (2020)
Anna Cichońska, Balaguru Ravikumar, Robert J. Allaway, Fangping Wan, Sungjoon Park, Olexandr Isayev, Shuya Li, Michael Mason, Andrew Lamb, Ziaurrehman Tanoli, Minji Jeon, Sunkyu Kim, Mariya Popova, Stephen Capuzzi, Jianyang Zeng, Kristen Dang, Gregory Koytiger, Jaewoo Kang, Carrow I. Wells, Timothy M. Willson, The IDG-DREAM Drug-Kinase Binding Prediction Challenge Consortium, User oselot, Mehmet Tan, Team N121, Chih-Han Huang, Edward S. C. Shih, Tsai-Min Chen, Chih-Hsun Wu, Wei-Quan Fang, Jhih-Yu Chen, Ming-Jing Hwang, Team Let_Data_Talk, Xiaokang Wang, Marouen Ben Guebila, Behrouz Shamsaei, Sourav Singh, User thinng, Thin Nguyen, Team KKT, Mostafa Karimi, Di Wu, Zhangyang Wang, Yang Shen, Team Boun, Hakime Öztürk, Elif Ozkirimli, Arzucan Özgür, Team KinaseHunter, Hansaim Lim, Lei Xie, Team AmsterdamUMC-KU-team, Georgi K. Kanev, Albert J. Kooistra, Bart A. Westerman, Team DruginaseLearning, Panagiotis Terzopoulos, Konstantinos Ntagiantas, Christos Fotis, Leonidas Alexopoulos, Team KERMIT-LAB - Ghent University, Dimitri Boeckaerts, Michiel Stock, Bernard De Baets, Yves Briers, Team QED, Yunan Luo, Hailin Hu, Jian Peng, Team METU_EMBLEBI_CROssBAR, Tunca Dogan, Ahmet S. Rifaioglu, Heval Atas, Rengul Cetin Atalay, Volkan Atalay, Maria J. Martin, Team DMIS_DK, Minji Jeon, Junhyun Lee, Seongjun Yun, Bumsoo Kim, Buru Chang, Team AI Winter is Coming, Team hulab, Gábor Turu, Ádám Misák, Bence Szalai, László Hunyady, Team ML-Med, Matthias Lienhard, Paul Prasse, Ivo Bachmann, Julia Ganzlin, Gal Barel, Ralf Herwig, Team Prospectors, Davor Oršolić, Bono Lučić, Višnja Stepanić, Tomislav Šmuc, Challenge organizers, Tudor I. Oprea, Avner Schlessinger, David H. Drewry, Gustavo Stolovitzky, Krister Wennerberg, Justin Guinney, Tero Aittokallio
Nature Communications , Vol. 12, Issue 1, pp. 3307 (2021)
Researchers from diverse backgrounds working together to advance science
Recent updates and announcements from the lab
Join us for a two-day workshop on AI methods for molecular sciences
Read more →The Isayev Lab welcomes three new researchers for Fall 2024
Read more →Major update brings faster conformer generation powered by AIMNet2 neural network potentials
Read more →We're always looking for talented and motivated researchers to join us. If you're interested in computational chemistry and machine learning, we'd love to hear from you.